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Abstract A irreversible Hg2+ selective ratiometric fluores-
cence probe FR, a fluorescein fluorophore linked to a
rhodamine B hydrazide by a thiourea spacer, was designed
and synthesized. The developed probe FR exhibited great
ratiometric fluorescence enhancement and remarkable yel-
low-magenta color change toward Hg2+ with excellent
selectivity in aqueous acetone solution, and the ratiometric
fluorescence response to Hg2+ was not interfered by other
metal cations including Fe3+, Co2+, Ni2+, Cr3+, Zn2+, Pb2+,
Cd2+, Ca2+, Mg2+, Ba2+ and Mn2+. The linear range and the
detection limit of this supposed ratiometric fluorescence
method for Hg2+ were 0.0–10.0×10−6 and 5×10−8 M,
respectively.
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Introduction

Design and synthesis of fluorescence chemosensors for Hg2+

with desirable properties have been of interest to chemists
for many years because of the lethal effects of Hg2+ on the
environment and living organisms [1–4], and a number of
chemosensors for Hg2+ have been reported [5–19]. Among

these chemosensors, most are direct fluorescence quenching
[6–9] or fluorescence enhancement models [10–19]. How-
ever, in most practical applications, changes in fluorescence
intensity only can also be caused by many other poorly
quantified or variable factors such as photobleaching,
concentration of probe molecule, the microenvironment
around the probe molecule, or the stability of light source.
Therefore, there is still an urgent need for feasible chemo-
sensors for the determination of Hg2+. Ratiometric method
measuring the ratio of fluorescence intensities at two
wavelengths provides an alternative approach, which can
overcome the drawbacks of intensity-based measurements
due to a built-in correction for environmental effects and
increase the selectivity, sensitivity and dynamic range of the
method [20–25]. However, up to now, only a few
ratiometric fluorescence probes for Hg2+ [26–28] have
been reported in literature. Moreover, the reported sensors
were mainly based on the mechanism of intramolecule
charge transfer [26–27] or excimer-monomer transfer [28].
To our knowledge, ratiometric fluorescence probe for Hg2+

based on fluorescence resonance energy transfer (FRET)
has not been reported in literature.

FRET is an interaction between a fluorophore at the
electronic excited state (energy donor) and a fluorophore at
the ground state (energy acceptor), which leads to the
transfer of excitation energy from the donor to the acceptor.
Although the efficiency of energy transfer is affected by the
distance between the donor and the acceptor and the
relative orientation of transition dipoles of both the donor
and acceptor, it is also mainly determined by the extent of
the spectral overlap between the donor emission and
acceptor absorption [29]. Therefore, we thought that it
would be possible to fabricate a probe based on the FRET
mechanism if a molecule could dramatically generate a
suitable fluorescent energy acceptor by the interaction with

J Fluoresc (2008) 18:1187–1192
DOI 10.1007/s10895-008-0365-7

G.-Q. Shang :X. Gao :M.-X. Chen :H. Zheng (*) : J.-G. Xu
Key Laboratory of Analytical Sciences, Ministry of Education,
Department of Chemistry,
College of Chemistry and Chemical Engineering,
Xiamen University,
Xiamen 361005, China
e-mail: hzheng@xmu.edu.cn



target analyte. It was anticipated that a rhodamine B
spirolactam derivative would be appropriate candidate
because it has two conformations (spirolactam form and
ring opened amide form) with distinctly different absorp-
tion and fluorescence properties [30]. The ring-opening
amide form of rhodamine B derivative has strong absorp-
tion at around 560 nm and emits strong fluorescence,
whereas the spirolactam form displays absorption only in
the ultraviolet region and no fluorescence. Obviously, if a
fluorescein derivative is chosen as the energy donor, there
is a significant spectral overlap between the emission of
fluorescein derivative and the absorption of ring-opening
amide form of rhodamine B derivatives (see Figs. 1 and 2).

Based on the above thinking, a ratiometric fluorescence
probe FR for Hg2+ was fabricated, which was composed of
fluorescein fluorophore linked to a rhodamine B hydrazide
by a thiourea spacer and could function as a dual
colorimetric and ratiometric fluorescent reporter for Hg2+.
Further experiments showed that FR made a feature of
good selectivity for Hg2+ in water and a red region emission
excited at visible wavelength with a ratiometric mode.

Experimental

Apparatus

A Hitachi F-4500 spectrofluorometer (Tokyo, Japan)
equipped with a plotter unit and a 1.0 cm quartz cell was
used for recording fluorescence spectra and making
fluorescence measurements. The absorption spectra were
made on a Beckmamn DU7400 absorption spectrophotom-
eter (America).

Reagents

All the reagents were used as received from Shanghai
Chemicals Group Company except for FITC from Acros
Organics. The inorganic salts were of the highest purity
available and existed in their nitrates or chlorides. Twice

deionized water was further distilled in the presence of
KMnO4.

Buffer solution (pH5.0) prepared by mixing 0.2 M 3, 3-
dimethylglutaric acid solution and 0.2 M sodium hydroxide
solution was used.

The synthesized dye FR dissolved in acetone solution to
make a 1.0×10–3 M stock solution. A 1.0×10–3 M standard
solution of mercuric chloride was prepared by dissolving
13.6 mg of the reagent in water and diluting up to 50 mL.

The probe FR was synthesized as follows (Scheme 1):
Rhodamine B hydrazide was synthesized according to the
literature [31]. Fluorescein isothiocyanate (FICT, 0.50 g,
1.3 mmol) and rhodamine B hydrazide (0.59 g, 1.3 mmol)
were dissolved in 4.0 mL dry dimethylfuran, and the
reaction mixture was stirred at room temperature under N2

atmosphere for 48 h. After removal of the solvent, the
residue was purified by flash chromatography with CHCl3/
acetone as the eluent to afford FR (0.98 g, yield: 89%). The
product was further confirmed by the results of 1H NMR
(CD3OD, 500 MHz), 13C NMR (DMSO-d6, 400 MHz) and
electrospray ionization (ESI) mass spectrometry (MS).
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Fig. 2 The absorption spectra of rhodamine B hydrazide and
rhodamine B (1 and 2, respectively) and the fluorescence emission
spectrum of fluorescein (λex=490 nm)
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Fig. 1 The structures of rhoda-
mine B hydrazide, rhodamine B
and fluorescein
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1H NMR (CD3OD, 500 MHz) δ 1.098 (t, J=8.0 Hz, 12 H,
4×NCH2CH3), 3.298–3.345 (m, 12 H, including
4×NCH2CH3; and 4 active H: 1× OH, 1× COOH, 2 H in
thiourea group, exchangeable with MeOD), 6.328 (d, J=
10.0 Hz, 2 H), 6.480 (S, 1 H), 6.484 (S, 2 H), 6.502 (d, J=
3.0 Hz, 2 H), 6.554 (S, 2 H), 6.576 (S, 1 H), 6.654 (d, J=3.0,
2 H), 6.954 (d, J=10.0 Hz, 1 H), 7.265(d, J=9.5 Hz, 1 H),
7.368 (dd, J=10.0, 2.0 Hz, 1 H), 7.666 (S, 1 H), 7.638
(d, J=9.5 Hz, 1 H), 7.720 (dt, J=9.5, 1.0 Hz, 1 H), 7.996
(d, J=9.5 Hz, 1 H)

13C NMR (DMSO-d6, 100 MHz) δ 12.902, 19.019,
30.064, 32.561, 40.900, 44.121, 56.294, 56.500, 63.268,
66.749, 68.979, 83.336, 97.557, 102.763, 104.929,
110.071, 112.975, 123.414, 123.513, 124.729, 126.158,

129.157, 130.107, 134.129, 140.947, 148.949, 152.285,
153.995, 159.939, 168.717, 181.700

ESI mass spectrometry, m/z: 846.2 (M)+

General procedure

Transfer appropriate amounts of HgCl2 solutions into a
series of 10.0 mL volumetric flasks, then add 1.0 mL 3,3-
dimethylglutaric acid–NaOH buffer (pH 5.4) and 4.0 mL
acetone. Dilute the solution with doubly-distilled water to
the mark, then add 100 μL 1.0×10–3 M FR stock solution
with a micropipette and mix thoroughly. After the mixture
was incubated at room temperature for 20 min, measure the
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Scheme 1 Synthesis of FR
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Fig. 3 The absorption spectra
(a) and fluorescence spectra (b)
of FR in the presence of Hg2+. a
[FR]=10.0 μM; [Hg2+]=0, 8.0,
10.0, 20.0, 30.0 μM, respective-
ly. b [FR]=10.0 μM; [Hg2+]=0,
1.0, 2.0, 3.0, 5.0, 6.0, 7.0,
10.0 μM, respectively. Medium:
acetone-water solution (40:60,
v/v); pH 5.40
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fluorescence ratio of I591/I520 with the excitation and
emission wavelengths at 490 and 591/520 nm, respectively.

Results and discussions

It can be seen from the curve in Fig. 3a that the free FR
([Hg2+]=0.0 mol/L) showed a maximum absorption wave-
length at 490 nm, which exhibited slightly yellow color
dominating by the fluorescein chromophore, and no
intramolecular FRET phenomenon can be observed in free
FR because the rhodamine B hydrazide group in FR shows
only a very small absorption in the wavelength region of
the fluorescein emission and this group is nonfluorescent.
Therefore, only green fluorescence (520 nm) of fluorescein
itself was observed when free FR was excited at 490 nm
(Fig. 3b, the curve of [Hg2+]=0.0 mol/L).

As reported [32–33], Hg2+ promoted the desulfurization
reaction of thiosemicarbazide to form 1,3,4-oxadiazole:

R

HN NH

NHR'

O S O

N N

R NHR'
 + Hg2+

 - HgS

thiosemicarbazide 1,3,4-oxadiazole  

Similarly, a thiosemicarbazide group exists in FR,
therefore, the reaction of Hg2+ at the thiosemicarbazide
group will force FR to form a 1,3,4-oxadiazole group as a
new spacer and lead to the release of fluorescent rhodamine
B moiety, which triggers a intramolecular FRET. Scheme 2
outlines the reaction mechanism of Hg2+ with FR based on
this design.

The proposed mechanism was further confirmed by the
succedent experimental results. Besides the absorption peak
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Fig. 4 The titration curves of fluorescent ratioof FR vs. Hg2+ ionic
concentration. [FR]=10 μM; λex/λem=490/520, 591 nm
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Table 1 Fluorescence ratio of FR upon additon of 50.0 μM of various
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at 490 nm, FR showed a new strong absorption peak at
565 nm (Fig. 3a) when the presence of Hg2+, which was
attributed to the absorption peak of ring-opening rhodamine
B moiety. We have validated the fluorescent product of FR
after reaction with Hg2+ by ESI-MS. The intense peak of m/z
814.1 (M)+ supported the proposed reaction product shown
in Scheme 2. Accordingly, this spectral change resulted in
the color change from yellow to magenta (Scheme 2),
indicating that FR can also serve as a highly sensitive
“naked-eye” indicator for Hg2+ in water.

Meanwhile, great changes in the fluorescence spectrum
of FR in the presence of Hg2+ were also observed (Fig. 3b).
The free FR displayed a single emission band centered at
520 nm when excited at 490 nm, which was attributed to
the emission of fluorescein, whereas, the reaction system of
FR with Hg2+ exhibited dual fluorescence peaks located at
520 and 591 nm, respectively, the latter agreed with the
emission of ring-opening rhodamine B moiety. Further-
more, the fluorescence intensity at 520 nm was decreased
and the fluorescence intensity at 591 nm was increased at
the same time with the increase of Hg2+ concentration.
Hence, the determination of Hg2+ can be performed by
measuring the ratio of fluorescence intensities at 591 and
520 nm, respectively. This fact obviously indicates that an
intramolecular FRET really exists between the fluorescein
moiety and the rhodamine B moiety produced by the action
of Hg2+ in PR. Figure 4 depicted the plot of the ratiometric
fluorescence response of FR with the increasing amounts of
Hg2+ and the presence of 1.0 equiv. of Hg2+ gave a ca. 65-
fold enhancement in ratiometric value of I591/I520 with
respect to the metal-free solution.

Table 1 shows the fluorescence responses of FR to
various background metal ions including some related
heavy, transition and main group metal ions. As shown in
Table 1, free FR (1.0×10–5 M) exhibits a rather low value
of fluorescence ratio (signed as the blank), upon addition of
5.0 equiv. of tested background metal ions, the fluorescence

ratio is nearly not affected, while the addition of Hg2+

results in a large ratio value, indicating the high fluorimetric
selectivity for Hg2+.

Furthermore, interferences from various coexistent metal
cations for the determination of 10.0 μM Hg2+ ion were
also investigated. The fluorescence ratio value of FR in the
presence of 10.0 μM Hg2+ ion was almost unaffected
(relative error≤±10%) by the addition of 5.0 equiv of
competing metal ions except for Cr3+ caused an approxi-
mately −15% relative error (Table 2).

Conclusion

In summary, we have developed a new fluorescence probe,
FR, for Hg2+ based on an intramolecular FRET with a high
selectivity. The color of this probe changes from yellow to
magenta when reacted with Hg2+, which makes it available
to detect Hg2+ either by ratiometric fluorimetry or by rapid
“naked eye” detection. Moreover, the ratiometric fluores-
cence detection for Hg2+ provides a built-in correction for
environmental effects, which is in favor of serving as a
practical probe for rapid and accurate determination of
mercuric ion in environmental systems. Furthermore, the
successful fabrication of the proposed probe provides an
alternative concept to design ratiometric fluorescence
probes by utilizing two fluorophores satisfying the require-
ments of intramolecular FRET.
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